41 research outputs found

    Convective Storm Life Cycle and Environments near the Sierras de Córdoba, Argentina

    Get PDF
    Satellite observations have revealed that some of the world's most intense deep convective storms occur near the Sierras de Córdoba, Argentina, South America. A C-band, dual-polarization Doppler weather radar recently installed in the city of Córdoba in 2015 is now providing a high-resolution radar perspective of this intense convection. Radar data from two austral spring and summer seasons (2015-17) are used to document the convective life cycle, while reanalysis data are utilized to construct storm environments across this region. Most of the storms in the region are multicellular and initiate most frequently during the early afternoon and late evening hours near and just east of the Sierras de Córdoba. Annually, the peak occurrence of these storms is during the austral summer months of December, January, and February. These Córdoba radar-based statistics are shown to be comparable to statistics derived from Tropical Rainfall Measuring Mission Precipitation Radar data. While generally similar to storm environments in the United States, storm environments in central Argentina tend to be characterized by larger CAPE and weaker low-level vertical wind shear. One of the more intriguing results is the relatively fast transition from first storms to larger mesoscale convective systems, compared with locations in the central United States.Fil: Mulholland, Jake P.. University of Illinois at Urbana; Estados UnidosFil: Nesbitt, Stephen William. University of Illinois at Urbana; Estados UnidosFil: Trapp, Robert J.. University of Illinois at Urbana; Estados UnidosFil: Rasmussen, Kristen L.. State University of Colorado - Fort Collins; Estados UnidosFil: Salio, Paola Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentin

    The effects of climate change on hailstorms

    Get PDF
    Hailstorms are dangerous and costly phenomena that are expected to change in response to a warming climate. In this Review, we summarize current knowledge of climate change effects on hailstorms. As a result of anthropogenic warming, it is generally anticipated that low-level moisture and convective instability will increase, raising hailstorm likelihood and enabling the formation of larger hailstones; the melting height will rise, enhancing hail melt and increasing the average size of surviving hailstones; and vertical wind shear will decrease overall, with limited influence on the overall hailstorm activity, owing to a predominance of other factors. Given geographic differences and offsetting interactions in these projected environmental changes, there is spatial heterogeneity in hailstorm responses. Observations and modelling lead to the general expectation that hailstorm frequency will increase in Australia and Europe, but decrease in East Asia and North America, while hail severity will increase in most regions. However, these projected changes show marked spatial and temporal variability. Owing to a dearth of long-term observations, as well as incomplete process understanding and limited convection-permitting modelling studies, current and future climate change effects on hailstorms remain highly uncertain. Future studies should focus on detailed processes and account for non-stationarities in proxy relationships

    Auditory temporal resolution of a wild white-beaked dolphin (Lagenorhynchus albirostris)

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 195 (2009): 375-384, doi:10.1007/s00359-009-0415-x.Adequate temporal resolution is required across taxa to properly utilize amplitude modulated acoustic signals. Among mammals, odontocete marine mammals are considered to have relatively high temporal resolution, which is a selective advantage when processing fast traveling underwater sound. However, multiple methods used to estimate auditory temporal resolution have left comparisons among odontocetes and other mammals somewhat vague. Here we present the estimated auditory temporal resolution of an adult male white-beaked dolphin, (Lagenorhynchus albirostris), using auditory evoked potentials and click stimuli. Ours is the first of such studies performed on a wild dolphin in a capture-and-release scenario. The white-beaked dolphin followed rhythmic clicks up to a rate of approximately 1125-1250 Hz, after which the modulation rate transfer function (MRTF) cut-off steeply. However, 10% of the maximum response was still found at 1450 Hz indicating high temporal resolution. The MRTF was similar in shape and bandwidth to that of other odontocetes. The estimated maximal temporal resolution of white-beaked dolphins and other odontocetes was approximately twice that of pinnipeds and manatees, and more than ten-times faster than humans and gerbils. The exceptionally high temporal resolution abilities of odontocetes are likely due primarily to echolocation capabilities that require rapid processing of acoustic cues.We wish to thank the Danish Natural Science Research Council for major financial support (grant no. 272-05-0395)

    Phylogenetic Distinctiveness of Middle Eastern and Southeast Asian Village Dog Y Chromosomes Illuminates Dog Origins

    Get PDF
    Modern genetic samples are commonly used to trace dog origins, which entails untested assumptions that village dogs reflect indigenous ancestry or that breed origins can be reliably traced to particular regions. We used high-resolution Y chromosome markers (SNP and STR) and mitochondrial DNA to analyze 495 village dogs/dingoes from the Middle East and Southeast Asia, along with 138 dogs from >35 modern breeds to 1) assess genetic divergence between Middle Eastern and Southeast Asian village dogs and their phylogenetic affinities to Australian dingoes and gray wolves (Canis lupus) and 2) compare the genetic affinities of modern breeds to regional indigenous village dog populations. The Y chromosome markers indicated that village dogs in the two regions corresponded to reciprocally monophyletic clades, reflecting several to many thousand years divergence, predating the Neolithic ages, and indicating long-indigenous roots to those regions. As expected, breeds of the Middle East and East Asia clustered within the respective regional village dog clade. Australian dingoes also clustered in the Southeast Asian clade. However, the European and American breeds clustered almost entirely within the Southeast Asian clade, even sharing many haplotypes, suggesting a substantial and recent influence of East Asian dogs in the creation of European breeds. Comparison to 818 published breed dog Y STR haplotypes confirmed this conclusion and indicated that some African breeds reflect another distinct patrilineal origin. The lower-resolution mtDNA marker consistently supported Y-chromosome results. Both marker types confirmed previous findings of higher genetic diversity in dogs from Southeast Asia than the Middle East. Our findings demonstrate the importance of village dogs as windows into the past and provide a reference against which ancient DNA can be used to further elucidate origins and spread of the domestic dog

    Substantial and sustained reduction in under-5 mortality, diarrhea, and pneumonia in Oshikhandass, Pakistan : Evidence from two longitudinal cohort studies 15 years apart

    Get PDF
    Funding Information: Study 1 was funded through the Applied Diarrheal Disease Research Program at Harvard Institute for International Development with a grant from USAID (Project 936–5952, Cooperative Agreement # DPE-5952-A-00-5073-00), and the Aga Khan Health Service, Northern Areas and Chitral, Pakistan. Study 2 was funded by the Pakistan US S&T Cooperative Agreement between the Pakistan Higher Education Commission (HEC) (No.4–421/PAK-US/HEC/2010/955, grant to the Karakoram International University) and US National Academies of Science (Grant Number PGA-P211012 from NAS to the Fogarty International Center). The funding bodies had no role in the design of the study, data collection, analysis, interpretation, or writing of the manuscript. Publisher Copyright: © 2020 The Author(s).Peer reviewedPublisher PD

    Spatial distribution of socio-demographic and housing-based factors in relation to flash and slow-rise flooding hazards in the U.S

    No full text
    Previous studies have drawn attention to racial and socioeconomic disparities in exposures associated with flood events at varying spatial scales, but most of these studies have not differentiated flood risk. Assessing flood risk without differentiating floods by their characteristics (e.g. duration and intensity of precipitation leading to flooding) may lead to less accurate estimates of the most vulnerable locations and populations. In this study, we compare the spatial patterning of social vulnerability, types of housing, and housing tenure (i.e. rented vs. owned) between two specific flood types used operationally by the National Weather Service—flash floods and slow-rise floods—in the floodplains across the Contiguous United States (CONUS). We synthesized several datasets, including established distributions of flood hazards and flooding characteristics, indicators of socioeconomic status, social vulnerability, and housing characteristics, and used generalized estimating equations to examine the proportion of socially vulnerable populations and housing types and tenure residing in the flash and slow-rise flood extents. Our statistical findings show that the proportion of the slow-rise flooded area in the floodplains is significantly greater in tracts characterized by higher percentages of socially vulnerable. However, the results could not confirm the hypothesis that they are exposed considerably more than less vulnerable in the flash flooded floodplains. Considering housing-occupancy vulnerability, the percentage of renter-occupancies are greater in the flash flood floodplains compared to slow-rise, especially in areas with high rainfall accumulation producing storms (e.g. in the Southeast). This assessment contributes insights into how specific flood types could impact different populations and housing tenure across the CONUS and informs strategies to support urban and rural community resilience and planning at local and state levels

    The effects of climate change on hailstorms

    Get PDF
    Hailstorms are dangerous and costly phenomena that are expected to change in response to a warming climate. In this Review, we summarize current knowledge of climate change effects on hailstorms. As a result of anthropogenic warming, it is generally anticipated that low-level moisture and convective instability will increase, raising hailstorm likelihood and enabling the formation of larger hailstones; the melting height will rise, enhancing hail melt and increasing the average size of surviving hailstones; and vertical wind shear will decrease overall, with limited influence on the overall hailstorm activity, owing to a predominance of other factors. Given geographic differences and offsetting interactions in these projected environmental changes, there is spatial heterogeneity in hailstorm responses. Observations and modelling lead to the general expectation that hailstorm frequency will increase in Australia and Europe, but decrease in East Asia and North America, while hail severity will increase in most regions. However, these projected changes show marked spatial and temporal variability. Owing to a dearth of long-term observations, as well as incomplete process understanding and limited convection-permitting modelling studies, current and future climate change effects on hailstorms remain highly uncertain. Future studies should focus on detailed processes and account for non-stationarities in proxy relationships

    High Resolution SnowModel Simulations Reveal Future Elevation‐Dependent Snow Loss and Earlier, Flashier Surface Water Input for the Upper Colorado River Basin

    No full text
    Abstract Continued climate warming is reducing seasonal snowpacks in the western United States, where >50% of historical water supplies were snowmelt‐derived. In the Upper Colorado River Basin, declining snow water equivalent (SWE) and altered surface water input (SWI, rainfall and snowmelt available to enter the soil) timing and magnitude affect streamflow generation and water availability. To adapt effectively to future conditions, we need to understand current spatiotemporal distributions of SWE and SWI and how they may change in future decades. We developed 100‐m SnowModel simulations for water years 2001–2013 and two scenarios: control (CTL) and pseudo‐global‐warming (PGW). The PGW fraction of precipitation falling as snow was lower relative to CTL, except for November–April at high elevations. PGW peak SWE was lower for low (−45%) and mid elevations (−14%), while the date of peak SWE was uniformly earlier in the year for all elevations (17–23 days). Currently unmonitored high elevation snow represented a greater fraction of total PGW SWE. PGW peak daily SWI was higher for all elevations (30%–42%), while the dates of SWI peaks and centroids were earlier in the year for all elevations under PGW. PGW displayed elevated winter SWI, lower summer SWI, and changes in spring SWI timing were elevation‐dependent. Although PGW peak SWI was elevated and earlier compared to CTL, SWI was more evenly distributed throughout the year for PGW. These simulated shifts in the timing and magnitude of SWE and SWI have broad implications for water management in dry, snow‐dominated regions
    corecore